Dienstleistungen, Produktion, Revision, Schulungen

ELASTOMERE

Elastomere

Elastomere gehören zur Gruppe der Kunststoffe. Es gibt verschiedene Einteilungsarten der Kunststoffe, eine gängige ist die nach Ihrem mechanisch-thermischen Verhalten. Diese gliedert die Kunststoffe in Duroplaste (engmaschig vernetzte Polymere), Thermoplaste (unvernetzte Polymere) und Elastomere (weitmaschig vernetzte Polymere) ein. Elastomere sind also vernetzte (vulkanisierte) Kautschuke. Die Vernetzung erfolgt z. Bsp. durch Schwefel, Peroxiden oder Bestrahlung.

Eine der bekanntesten Eigenschaften dieses Werkstoffs ist, dass er zwar formfest, gleichzeitig aber elastisch ist. Diese Elastizität stellt ein statisch-dynamisches Gleichgewicht von Ordnung und Entropie dar, entgegen der von Federn bekannten Anziehungskräften zwischen sich ändernden Atomabständen. Daher speichert dieser Werkstoff keinerlei Spannenergie.

Beispiel einer Mischung

Bestandteil mit Prozentanteil am Beispiel NBR

30% Kautschuk (NBR) 1% Vernetzungsmittel (Schwefel)

44% Russ (schwarz) 0.7% Beschleuniger

18% Weichmacher 0.8% Stearinsäure (Vulkanisationsaktivatoren)

2% Verarbeitungshilfsmittel 2% Zinkoxid (Vulkanisationsaktivatoren)

1.5% Alterungsschutzmittel

Russ -> Verbesserung der mechanischen Eigenschaften (z. Bsp. Zugfestigkeit, Reissdehnung, Abrieb)

Weichmacher -> Erhöht die Plastizität und verbessert die Füllstoffverarbeitung. Beeinflusst z. T. die Tieftemperatur, Flexibilität und Härte.

Verarbeitungshilfsmittel -> wie z. Bsp. Wachse und Paraffine. Beeinflussen die Formbeständigkeit und die Entformung.

Alterungsschutzmittel -> verzögert die durch Licht-, Ozon-, Sauerstoff- (etc.) hervorgerufenen Alterungsvorgänge.

Beschleuniger -> verkürzt die Vulkanisationszeit bzw. setzt die Vulkanisationstemperatur herab.

Auswahlkriterien

Kriterium	Beispiele
Medium	Flüssigkeiten, Gase
Temperatur	Plus- oder Minus-Bereich
Druck	Überdruck, Vakuum
Einsatzart	dynamisch, statisch
spezielle Anforderungen	ELL, FDA, elektrische Leitfähigkeit
weitere Anforderungen	Härte, Farbe, Toleranzen

Materialidentifikation

Dichte

- Gleiche Mischungs-Chargen haben immer die gleiche Dichte
- FKM hat eine relativ hohe Dichte (~1.8 -2.0)

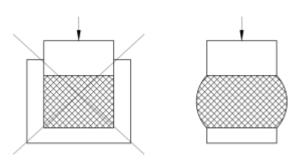
Rückprall-Elastizität

- EPDM hat hohes Rückprallen
- FKM hat kein Rückprallen
- NBR hat mittleres Rückprallen

Thermogravimetrie

- Identifikation der Elastomer Mischung
- Beim Erhitzen der Proben auf über +700 °C verflüchtigen sich bei gewissen Temperaturen die Bestandteile
- Anhand eines Temperatur-/Gewichtsdiagrammes kann Art und Mischungsanteil bestimmt werden

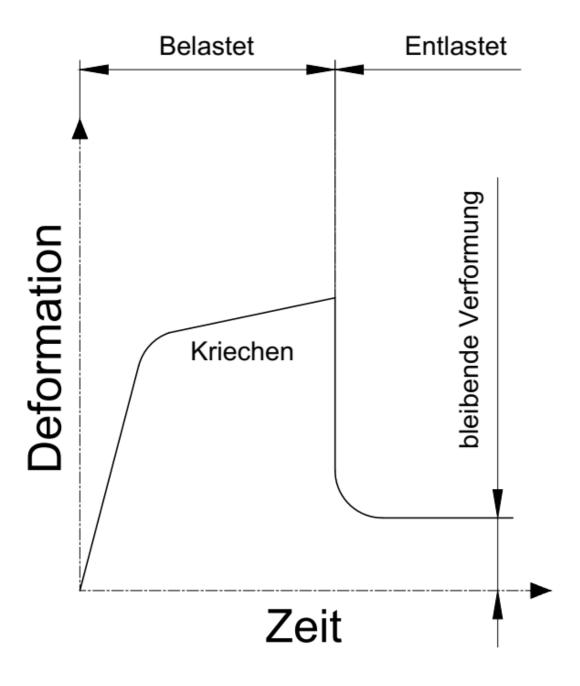
Brandverhalten

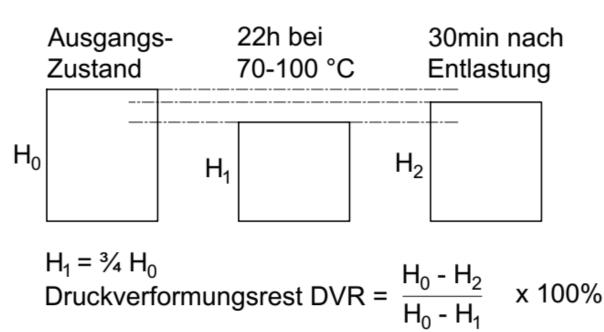

- Beilsteinprobe -> grüne Flamme = chlorhaltige Mischung -> CR
- Flammtest (Brennverhalten, Art der Rückstände)

Flammtest

Polymer	Brennverhalten	Art der Rückstände	Charakteristische Merkmale
Natur-Kautschuk NR	Brennt sehr gut in eigener Flamme, gleichmässiges Brennverhalten, russende Flamme	klebrig, schmierig, weich	charakteristischer Geruch
Acrylnitril-Butadien-Kautschuk NBR	brennt gut in eigener Flamme, jedoch sehr ungleichmässig	bröckelig, ganz leicht schmierig	flackernde, spritzige Flamme
Chloroprene-Kautschuk CR	brennt nicht in eigener Flamme (flammwidrig), d.h. beim Entfernen der Flamme erlischt der Prüfling	fest körnig, nicht schmierig	eher stechender Geruch
Ethylen-Propylen-Kautschuk EPDM	brennt sehr gut in eigener Flamme, russend	sehr feinkörnig, ganz leicht schmierig	stechender Geruch
Fluor-Kautschuk FKM	brennt nicht in eigener Flamme, heller Rauch	nur sehr geringe Rückstände	sehr starker, stechender Geruch, Intensität kann z.B. mit Ammoniak verglichen werden
Polyurethan-Kautschuk PUR	brennt nicht in eigener Flamme, starker charakteristischer Geruch	weich-flüssig, nach längerer Brennprobe tropft der Prüfling	wird sofort an der Brennstelle flüssig, eine Art schmelzen
Silikon-Kautschuk MVQ	brennt nicht in eigener Flamme, Brennstelle wird weiss, Geruch nicht intensiv	fest, weiss	gelb-weisse Flamme, weisser Rauch

Kompressionsverhalten


• Elastomere sind grundsätzlich nicht komprimierbar - seitliche Ausweichmöglichkeit!



- Kraftaufwand von der Härte und Geometrie abhängig
- je grösser die freie Fläche umso kleiner der Formfaktor (Kraftaufwand)

Druckverformungsrest

Der Druckverformungsrest ist die definierte bleibende Verformung eines Elastomers nachdem die formändernde Belastung aufgehoben wurde.

Ein DVR von 0% bedeutet eine Vollständige Rückstellung (in der Realität nicht möglich), ein DVR von 100% bedeutet dass der Körper keine Rückstellung zeigt (völlige Verformung).

Der DVR ist abhängig von: Elastomer-Typ, Temperatur, Vulkanisationsgrad, Zeit und Form des Teils.

Ausfallgründe und Schadenanalyse

Merkmale	mögliche Ursachen
Oberflächenrisse	Ozoneinwirkung, zu starke Aufdehnung, falsche Lagerung
Risse und Verhärtung	Temperatureinflüsse, teilweise durch Mediums Einflüsse
Verhärtung und Ausbrüche	zu hohe Temperaturen unter dynamischer Belastung
Blasenbildung / Ausbrüche auf Oberfläche	extrem schnelle Druckentlastung bei Gasabdichtungen (Metall -> dichtes Atomgitter, Elastomere -> lockeres 3D- Netzwerk)
Abschälen / Materialausbrüche	hohe Drücke, zu grosse Dichtspalte, fehlender Back-up-Ring
Quellung	Medium Beständigkeit 0-5% normal 5-15% statisch noch einsetzbar < 15% nicht mehr einsetzbar
Starke Abblattung	bleibende Verformung, zu hohe Temperaturen, falsche Einbauräume, schlecht vulkanisiertes Material
Abrieb	zu starke dynamische Belastung, Mangelschmierung, rauhe Oberfläche, zu starke Verpressung

Vernetzungsarten

Schwefelvernetzung	Peroxydvernetzung
 ungebundener Schwefel kann Korrosion an Metallen bilden (z.B. Silber, Kupfer, Blei) neigt zum Kleben 	 besseres Temperaturverhalten niedriger DVR schwierige Verarbeitung teurer als Schwefelvulkanisiert keine Korrosion

Korrosion durch Salzsäurebildung

"Billige" CR-Mischungen können bei erhöhter Temperatur Salzsäure abspalten. Dies gilt für alle chlorierten Elastomere. Durch entsprechende Stabilisatoren kann diese Salzsäurebildung verhindert werden.

Kontakt mit Kunststoffen

Weichmacher in Elastomeren können in Kontakt mit Kunststoffen folgende Reaktionen zeigen:

Kleben / Verfärben / Rissbildung (Polycarbonat) / Erweichung (PVC).

-> weichmacherfreie Werkstoffe einsetzen.

Elektrische Eigenschaften

Grundsätzlich sind russgefüllte Mischungen antistatisch mit einem elektrischen spezifischen Widerstand von 10^5 bis $10^9 \Omega/\text{cm}$. Russanteil ca. 60 - 65 %. Durch Änderung der Russstruktur wird ein Elastomer leitend (aktiver Russ), durch Beimischung von Russersatz wird ein Elastomer isolierend (Kaolin 15%).

Einfärben von Elastomeren

Werden Elastomere eingefärbt, muss der Füllstoff Russ durch helle Zusätze ersetzt werden. Dies wirkt sich sehr negativ auf die physikalischen und mechanischen Eigenschaften aus (Ausnahme: MVQ und PUR).

Lagerung von Elastomeren

Temperatur	optimal: +15 °C bis +25 °C. Tiefere Temperatuen sind möglich (nicht unter -10 °C)
Feuchtigkeit	optimal: 50% - 60%, nicht extrem trockene oder feuchte Umgebung.
Licht	keine direkte Sonnenbestrahlung oder Kunstlicht mit hohem UV-Anteil.
Sauerstoff / Ozon	wenn möglich luftdichte Behältnisse verwenden.
Deformation	keine Zug-, Druck- oder sonstige Verformung.
Kontakt mit Flüssigkeiten	ist zu vermeiden.
Lagerzeit Empfehlung	NBR / CR: 6 Jahre, EPDM: 8 Jahre, rest ca. 10 Jahre.

Jeweilige Eigenschaften

Eigenschaft / Material	NR	EPDM	NBR	HNBR	CR	PUR	MVQ	FKM
Bruchdehnung	1	3	2	2	2	2	3	3
Stoßelastizität	2	3	3	3	3	3	3	5
Abriebwiderstand	2	3	2	2	2	1	4	4
Weiterreißwiderstand	2	3	3	2	2	3	5	4
Druckverformungsrest bei -40 °C	3	4	5	5	5	5	3	5
Druckverformungsrest bei +20 °C	2	3	3	2	3	3	2	2
Druckverformungsrest bei +100 °C	5	2	5	2	4	5	1	1
Kälteflexibilität	2	2	3	3	3	4	1	5
Alterungs- beständigkeit	3	1	3	1	2	2	1	1
Ozonbeständigkeit	4	1	3	1	2	2	1	1
Benzinbeständigkeit	5	5	1	1	2	1	5	1
Öl- und Fett- beständigkeit	5	5	1	1	2	1	3	1
Säurebeständigkeit	3	1	4	4	2	5	5	1
Laugenbeständigkeit	3	2	3	3	2	5	5	1
Heißwasser- beständigkeit	3	1	3	2	3	5	5	2
Gasdurchläßigkeit	5	4	2	2	3	1	5	2
1 = sehr gut $2 = $ 0	gut	3 = mitte	el 4=	= mässig		5 = un	genügeı	nd

FASERWERKSTOFFE

Fasermaterial

Fasermaterial ist ein preisgünstiges Material das für einfache Anwendungen (z. Bsp. Heizungsbau oder Wasserleitungen) geeignet ist. Daraus gefertigte Dichtungen weisen sich durch gutes Handling aus.

Der Aufbau ist (meist) eine Aramid Faser mit einem NBR Binder. Entgegen den früheren Dichtungen aus Asbest, sind heutige Faserwerkstoffe mit einem höheren Binder-Anteil als Faser-Anteil ausgestattet.

Aufgrund des Binder-Anteils unterliegen Fasermaterialien einer Alterung (durch Ozon und UV).

Die optimale Verpressung liegt bei ca. 40%, wobei in der Realität meistens niedrigere Werte erreicht werden.

Das Material kann Unebenheiten in der Höhe von etwa 10% der Ausgangsdicke ausgleichen.

Fasermaterialien sind Druck- und Temperatur abhängig (max. Druck und max. Temperatur dürfen nicht gleichzeitig auftreten).

Durch die Belastung härtet das Material aus, es ist keine Rückstelldichtung.

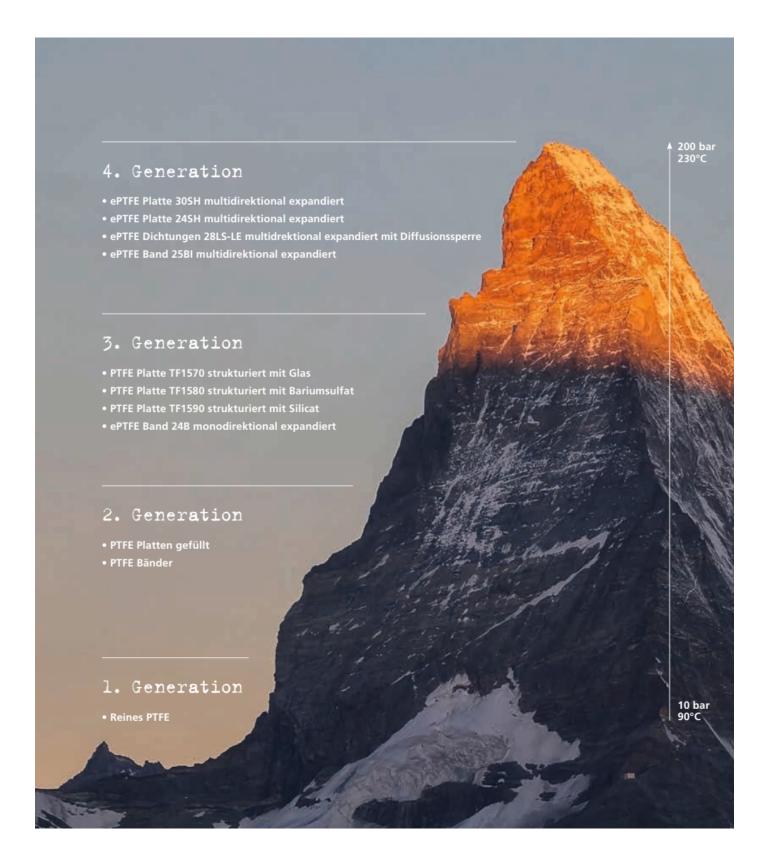
Nennenswertes

- keine nassen Faserdichtungen einsetzen (führt zu Leckage und Aufquillung).
- Nachziehen nur in abgekühltem Zustand.
- nicht geeignet für Dampf / Sattdampf
- Glycole (Frostschutz) bis zu einer Konzentration von max. 15%, danach zu Graphit wechseln.
- explosive Dekompression: Achtung bei Aggregatszustand Änderung -> Wasserperlen können bei Neu-Erhitzung explodieren und die Dichtung beschädigen. Im Zweifelsfall Graphit anwenden.

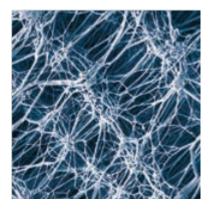
Beständigkeitsliste anhand des Materials FP 3000: Beständigkeitsliste FP 3000.

Bei uns erhältliche Faserwerkstoffe:

- <u>AFM 34</u>
- <u>FP 3000</u>
- Novaform 2300 / Novapress 850
- Novatec Premium


PTFE (POLYTETRAFLUORETHYLEN)

PTFE


Heute wird PTFE als Dichtungswerkstoff sehr häufig eingesetzt. Dies auch dank der fortlaufenden technischen Verbesserungen des Materials. Je nach Einsatzgebiet, sprich je nach Aufgabe bei einer Anwendung, kann heute auf eine Vielzahl unterschiedlicher PTFE's zurück gegriffen werden. PTFE wurde in den letzten Jahrzehnten stetig an die Herausforderungen der Dichtungstechnik angepasst. Das Hauptaugenmerk in der Dichtungstechnik liegt sicherlich im Kaltfluss sowie der Reinheit einer PTFE-Dichtung.

Die verschiedenen Qualitäten unterscheidet ASPAG heute in ASPAG-Generationen.

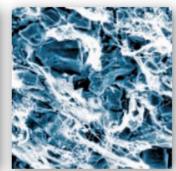
ASPAG PTFE 4 Generationen-Modell: (auf Bild klicken zur Vergrösserung)

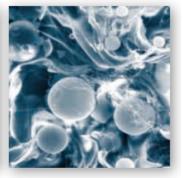
4. Generation

Die multidirektionalen ePTFE's bilden heute die höchste Qualität von ePTFE's aus dem Haus ASPAG. Der bekannte Kaltfluss wird durch die multidirektionale Struktur

auf ein extremes Minimum reduziert. Sie bieten heute die höchste Sicherheit im Einsatz mit PTFE im Bereich der Dichtungstechnik und ist Stand der Technik.

Die 4. Generation ist als Platte oder Band erhältlich.


3. Generation (auf Bild klicken zur Vergrösserung)


Monodirektionale Struktur (vorwiegend Bänder)

Füllstoff Bariumsulfat (Platten)

Füllstoff Silicat (Platten)

Füllstoff Hohlglaskugeln (Platten)

ePTFE-Bänder:

Heutige monodirektionale ePTFE-Bänder sind relativ Formstabil und haben eine sehr hohe Anpassungsfähigkeit. Das perfekte Universalband für den Alltag.

Strukturierte PTFE's (Platten):

PTFE-Platten werden heute mit verschiedenen Füllstoffen gegen Kaltfluss verstärkt. Die Füllstoffe und das PTFE werden als Platte im Kaltverfahren hergestellt. Durch das Verfahren werden die PTFE Partikel miteinander verbunden sprich vernetzt und sind somit mechanisch stabiler als geschälte Varianten.

2. Generation

PTFE-Bänder:

Die monodirektionalen PTFE-Bänder aus der 2. Generation sind mechanisch stabiler als reines PTFE. Durch die monodirektionale Ausrichtung ist das Fliessverhalten lediglich in eine Richtung.

Gefüllte Platten:

Gefüllte PTFE's sind immer Kombinationen von PTFE und Füllstoffen. Das reine PTFE wird mit Füllstoffen unter Druck und Temperatur zu einem Rohling verpresst. Der daraus entstandene Rohling wird im Schälverfahren zu Platten weiterverarbeitet. In den meisten Fällen werden Glasfasern zur Verstärkung eingesetzt.

1. Generation

Reines PTFE

Das reine PTFE gehört zur 1. Generation und ist unverstärkt. Der Vorteil ist, dass das Material aus 100% reinem PTFE besteht und eine sehr glatte Oberfläche hat. In vielen Anwendungen ist das hohe Fliessverhalten, dass bei Temperaturzunahme verstärkt wird, ein grosser Nachteil.

Chemikalienbeständigkeit für TF und e-PTFE Produkte: Beständigkeitsliste.

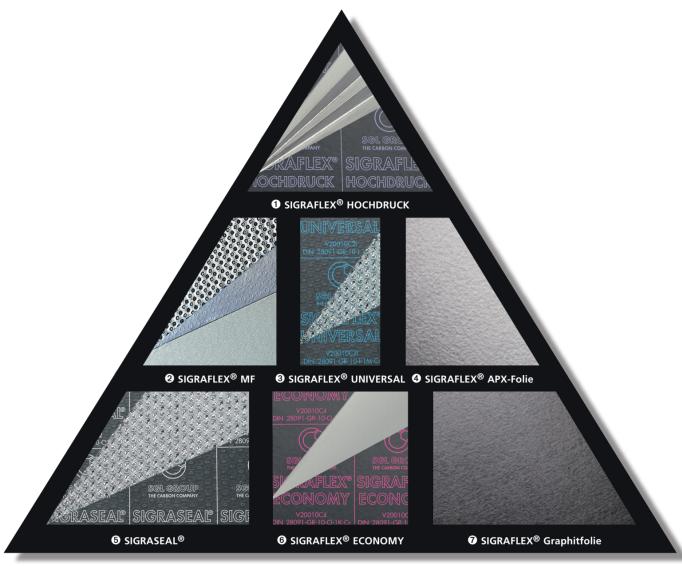
Nennenswertes


- Ab ca. 270° löst sich das Fluor aus dem Werkstoff -> hochgiftig!
- PTFE Dichtungen können mit Schwalbenschwanz, geshiftet oder geschweisst hergestellt werden.
- PTFE wird oft in Kombination verwendet, z. Bsp. PTFE umhüllte Dichtungen, FEP-O-Ringe etc.
- Der Werkstoff zeichnet sich durch seine hervorragende chemische Beständigkeit aus. Vorsicht gilt bei Medien mit "-fluor" im Namen.

Bei uns erhältiche PTFE's

	Bänder	Flachdie	chtungen	Hüllendichtungen			
TEADIT® 25BI	Hochleistungs- Gewindedichtband	TEADIT® 24 SH	GORE® GR	TFM 1600 umhüllt mit Fasereinlage			
TEADIT® 24B	Low Emissions Pipe Thread Tape	TEADIT® 28 LS-LE	GORE® Style 800	TFM 1600 umhüllt mit Graphiteinlage			
Produra® Universal	Standard Gewindedichtband	TEADIT® TF 1590	TFM 4105	TFM 1600 umhüllt mit Fasereinlage, Wellring und Erdungslasche			
GORE® DF	GoldEnd® Gewindedichtband	TEADIT® TF 1580	rein PTFE	TFM 1600 umhüllt mit Graphiteinlage, Wellring und Erdungslasche			
GORE® Serie 500		TEADIT® TF 1570	Sigraflex® MF				

Dienstleistungen, Produktion, Revision, Schulungen



GRAPHIT

Graphit

Die verschiedenen Graphitqualitäten in der Dichtungstechnik wurden entwickelt, um für jede Anwendung eine passende Lösung bereitzuhalten. Von der einfachen Reingraphitplatte, die mit einer geklebten Edelstahlfolie verstärkt ist, über Platten mit einer zusätzlichen Edelstahl-Spiessblecheinlage bis hin zur hochwertigen Graphitfolie (99.85% Reinheit), mit mehreren Lagen Edelstahlfolien und einem kleberfreien Verbund, existiert für jede Anforderung das passende Produkt. Dabei ist es von grosser Bedeutung, dass die Dichtung auf die Anwendung ausgelegt wird.

ASPAG Sicherheitspyramide: (auf Bild klicken zur Vergrösserung)

® eingetragene Marken der SGL CARBON SE

© aspag Switzerland

1. SIGRAFLEX® HOCHDRUCK

Aspag Empfehlung Temp. bis 400°C (550°C) / Druck bis 100 bar (250 bar)

Die SIGRAFLEX® HOCHDRUCK ist eine hochfeste Graphitdichtungsplatte aus dünnen Lagen hochreiner Graphitfolie. Mehrlagige, glattblechverstärkte und klebefreie Einlagen geben der Dichtungsvariante ihre Einzigartigkeit. Dank der Oberflächenbeschichtung ist die Dichtung relativ kratzfest und die Anhaftung am Flanschblatt wird reduziert. Aufgrund der Graphitreinheit von 99,85% tritt das Material auch unter der Bezeichnung Nuklearqualität in Erscheinung.

Einsatzgebiete: Chemische und petrochemische Industrie, Nuklearanwendungen, Raffinerien, Anlagebau, Maschinenbau, Behälterbau, Altanlagen, Kraftwerke, Heizanlagen, Verbrennungsanlagen Anwendungen: Dampfleitungen, Rohrleitungen, hochbelasteten Dichtverbindungen, Wärmeträgeröl, Pumpen und Armaturen, hohen und sehr hohen Drücken, Druckschlägen, Vakuum, korrosiven Medien

2. SIGRAFLEX® MF

Aspag Empfehlung Temp. bis 270°C / Druck bis 160 bar (nur mit Innenbördel)

Die SIGRAFLEX® MF ist auf der Oberfläche mit einer dünnen Metallfolie sowie einer PTFE-Folie versehen. Diese Graphitvariante verhindert das Anhaften am Flanschblatt. Durch die auf der Oberfläche angebrachte PTFE Folie, ist das Graphit auf den Dichtflächen gefangen. Mit zusätzlichen Bördeln ergibt sich eine exzellente Dichtheit und eine hohe Prozess- und Produktreinheit (FDA konform).

Einsatzgebiete: Chemische und petrochemische Industrie, Raffinerien, Anlagebau, Maschinenbau, Behälterbau, Altanlagen, Kraftwerke, Heizanlagen, Verbrennungsanlagen, Lebensmittelindustrie, Pharmaindustrie Anwendungen: Dampfleitungen, Rohrleitungen, Wärmeträgeröl, Pumpen und Armaturen, Vakuum, korrosiven Medien, hohen Anforderungen an Prozesshygiene, geringer Flächenpressung

3. SIGRAFLEX® UNIVERSAL

Aspag Empfehlung Temp. bis 400°C (550°C) / Druck bis 60 bar (100 bar)

Die SIGRAFLEX® UNIVERSAL ist eine mechanisch verbundene Graphitdichtungsplatte. Durch die homogene Verspiessung der Einlage ergibt sich ein sehr guter Verbund. Dank der Oberflächenbeschichtung ist die Dichtung relativ kratzfest und die Anhaftung am Flanschblatt wird reduziert.

Einsatzgebiete: Chemische und petrochemische Industrie, Raffinerien, Anlagebau, Maschinenbau, Behälterbau, Altanlagen, Kraftwerke, Heizanlagen, Verbrennungsanlagen Anwendungen: Dampfleitungen, Rohrleitungen, Pumpen und Armaturen, hohen Drücken, Vakuum, korrosiven Medien

4. SIGRAFLEX® APX-Folie

Aspag Empfehlung Temp. bis 450°C (550°C) / Druck bis 25 bar

Die SIGRAFLEX® APX-Folie ist eine flexible Graphitfolie mit herrausragender Oxidationsbeständigkeit für Dichtungsauflagen und Packungsringe. Mit Hilfe eines verbesserten Fertigungsverfahren gelingt es, den Oxidationsinhibitor in die Struktur einzubringen, wodurch eine verbesserte Temperaturbeständigkeit vorhanden ist.

Anwendungen: Pumpen und Armaturen, Auflagen für Kammprofildichtungen bei hohen Temperaturen, Abgasanlagen

5. SIGRASEAL®

Aspag Empfehlung Temp. bis 400°C (500°C) / Druck bis 40 bar (100 bar)

Die SIGRASEAL® Dichtungsplatte ist eine Standard-Spiessblechvariante. Auch dieser Typ besitzt ein homogenes

Spiessblech für einen guten Verbund. Das Graphit ist gegenüber der Universalqualität jedoch nicht antihaftend beschichtet.

Einsatzgebiete: Chemische und petrochemische Industrie, Raffinerien, Anlagebau, Maschinenbau, Behälterbau, Altanlagen, Kraftwerke, Heizanlagen, Verbrennungsanlagen

Anwendungen: Dampfleitungen, Rohrleitungen, Pumpen und Armaturen, mittleren Drücken, Vakuum, korrosiven

Medien

6. SIGRAFLEX® ECONOMY

Aspag Empfehlung Temp. bis 400°C (550°C) / Druck bis 25 bar (40 bar)

Die SIGRAFLEX® ECONOMY ist eine geklebte, glattblechverstärkte Variante, welche bei Standardanwendungen Ihren Einsatz findet.

Einsatzgebiete: Anlagebau, Maschinenbau, Behälterbau, Altanlagen, Heizanlagen, Verbrennungsanlagen Anwendungen: Rohrleitungen, Pumpen und Armaturen, Vakuum, korrosiven Medien, Abgasleitungen, geringer Flächenpressung

7. SIGRAFLEX® Graphitfolie

Aspag Empfehlung Temp. bis 400°C (500°C) / Druck bis 25 bar

Die SIGRAFLEX® Graphitfolie in Industriequalität zeigt im Vergleich zur APX-Folie eine geringe thermische Beständigkeit sowie einen etwas höheren Halogengehalt auf.

Anwendungen: Pumpen und Armaturen, Auflagen für Kammprofildichtungen, Auflagen generell

Veredelung von Graphitdichtungen (auf Bild klicken zur Vergrösserung)

SIGRAFLEX®
HOCHDRUCK mit
Innenbördel und
vorverpresstem
Zentrierrand

SIGRAFLEX[®]
HOCHDRUCK mit
Innenbördel

SIGRAFLEX®
MF mit
Innenbördel

1. SIGRAFLEX® HOCHDRUCK mit Doppelbördel

Aspag Empfehlung Temp. bis 450°C (600°C) / Druck bis 160 bar

Die SIGRAFLEX® HOCHDRUCK mit Doppelbördel wird vorwiegend in Nut-Feder-Anwendungen eingesetzt. Diese Dichtung ist extrem beanspruchbar, somit ist eine Überpressung auch im Nut-Feder-Bereich unwahrscheinlich. Durch den guten Ausschluss von Sauerstoff kann das System mit dieser Dichtung bis zu 600°C belastet werden.

2. SIGRAFLEX® HOCHDRUCK mit Innenbördel und vorverpresstem Zentrierrand

Aspag Empfehlung Temp. bis 450°C / Druck bis 250 bar

Die SIGRAFLEX® HOCHDRUCK mit Innenbördel hat seine Stärken bei den hohen Drücken und den hohen Temperaturen. Durch die hochwertige Graphitqualität wird auch diese Dichtung bis zu 550°C eingesetzt und bietet die höchste Sicherheit bei Graphitdichtungen mit Innenbördel. Der vorverpresste Zentrierrand unterstützt den Einbau der Dichtung. Durch die Vorverpressung reduziert sich die Fläche der Dichtung, die mit Hilfe der Schrauben verpresst werden muss. Wenn die Dichtung beim Einbau soweit verpresst wurde, dass das Flanschblatt auf dem vorverpresstem Zentrierrand aufliegt, ist dies mit dem Schlüssel spürbar und die Dichtung ist im Bereich der optimalen Verpressung (Faustregel und ersetzt keine Berechnung).

3. SIGRAFLEX® HOCHDRUCK mit Innenbördel

Aspag Empfehlung Temp. bis 450°C / Druck bis 250 bar

Die SIGRAFLEX® HOCHDRUCK mit Innenbördel hat ihre Stärken bei den hohen maximal zulässigen Flächenpressungen und den hohen Temperaturen. Durch die hochwertige Graphitqualität wird auch diese Dichtung bis zu 550°C eingesetzt und bietet die höchste Sicherheit bei Graphitdichtungen mit Innenbördel.

4. SIGRAFLEX® MF mit Innenbördel

Aspag Empfehlung Temp. bis 270°C / Druck bis 160 bar

Die SIGRAFLEX® MF ist eine Weiterentwicklung und hat den grossen Vorteil, dass es am Flanschblatt nicht anhaftet. Das typische Anhaften von unbeschichteten Graphitfolien, welches vor allem bei zyklischen Betriebsbedingungen stattfindet, wird durch die auf der Oberfläche aufgebrachten PTFE-Folien verhindert. Durch das zusätzliche Anbringen von Bördeln sind alle produkteberührenden Teile lebensmittelkonform.

5. SIGRAFLEX® UNIVERSAL mit Innenbördel

Aspag Empfehlung Temp. bis 450°C / Druck bis 160 bar

Die SIGRAFLEX® Universaldichtung ist die Standardvariante. Mit der Spiessblecheinlage (mechanischer Verbund) und dem Innenbördel ist diese Dichtung eine gute Standarddichtung für alle Anwendungen, bei welchen Druckschläge unvermeidbar sind oder kein Graphit ins Medium gelangen darf.

Beim Einsatz von allen Graphitdichtungen über 400°C bitten wir um Rücksprache.

Bördeldichtungen

- Bördeldichtungen gelten als ausblassicher und werden daher bei hohen Drücken und vor allem bei Druckschlägen eingesetzt.
- Graphitdichtungen mit einem Innenbördel sind gegenüber dem Medium abgekapselt und es können keine Graphitpartikel ins Medium gelangen.
- Bei bereits geringer Flächenpressung wird die Diffusionsleckage verhindert.
- Bei Nut-Feder-Systemen kann eine Doppelbördeldichtung nur schlecht überverpresst werden.
- Bei schmalrandigen Dichtungen werden teilweise Bördel angebracht und unterstützen beim Einbau die Stabilität von grossen Dichtungen.

Einsatzgebiete: Chemische und petrochemische Industrie, (Nuklearanwendungen nur Hochdruckvarianten), Raffinerien, Anlagebau, Maschinenbau, Behälterbau, Altanlagen, Kraftwerke, Heizanlagen, Verbrennungsanlagen Anwendungen: Dampfleitungen, Rohrleitungen, hochbelasteten Dichtverbindungen, Wärmeträgeröl, Pumpen und Armaturen, sehr hohen Drücken, Druckschlägen, Vakuum, korrosiven Medien

Vorteile von SGL Graphiten

- Chargenrückverfolgbarkeit
- gleichbleibend hohe Graphitqualität (Reinheit)
- sehr geringer Schwefelgehalt sowie Chloridgehalt und dadurch Vermeidung von Korrosion am Flanschblatt
- Hochdruckvariante mit einzigartigem, klebefreien Verbund
- homogene Spiessbleche
- Spiessbleche ohne Überlappung bei grossen Plattenformaten
- Labor für Analysen bei SGL vorhanden

Versteckte Mängel bei Graphitmaterialien

• Einlage Verspiessungsfehler (unregelmässige und fehlerhafte Verspiessung)

• Einlage mehrlagig (mehrere Einlagestreifen in einer Platte)

Aufbau, einsatzgebiete, Anwendungen von Graphiten (auf Bild klicken zur Vergrösserung)

				Grap	hitaufbau				*						Anwendung	gen / Einsat	zgebiete	2			
Produkt	Reinheit	Dichte	Einlage	Anzahl Einlagen	Verbund	Zusatz	max. Temp.	Max. Druck in bar	Mindest- flächen- pressung in N/mm²	als Auflage in Kombi- nation mit Metall	Dampf	korrosive Medien	Wärme- trägeröl	Rohr- leitungen	Anlagebau Behälterbau Maschinen- bau	Chemische Industrie	Kraft- werke	Verbren- nungs- anlagen	Raffi- nerien	Pharma	Nuklear
SIGRAFLEX® HOCHDRUCK	> 99.85%	1.1	Glattblech	3	klebefrei	Imprägnierung	400°C (550°C)	100 (250)	18	nein	ja	ja	ja	ja	ja	ja	ja	ja	ja	nein	ja
SIGRAFLEX [®] MF				siehe	unter SIGRAFLE)	[®] MF mit Bördel									siehe unter S	IGRAFLEX [®] MF mit	Bördel				
SIGRAFLEX [®] UNIVERSAL	> 98%	1	Spiessblech	1	mechanisch	Imprägnierung	400°C (550°C)	60 (100)	22	nein	ja	ja	nein	ja	ja	ja	ja	ja	ja	nein	nein
SIGRAFLEX® ECONOMY	> 98%	1	Glattblech	1	geklebt	keine	400°C (550°C)	25 (40)	35	nein	bedingt	ja	nein	ja	ja	ja	bedingt	nein	nein	nein	nein
SIGRAFLEX [®] APX-Folie	> 98%	1	keine	0	kein	(Wärme- behandlung)	450°C (550°C)	in Kombi- nation	in Kombi- nation	ja	in Kombi- nation	in Kombi- nation	in Kombi- nation	in Kombi- nation	in Kombi- nation	in Kombi- nation	in Kombi- nation	in Kombi- nation	in Kombi- nation	nein	in Kombi- nation
SIGRASEAL [®]	> 98%	1	Spiessblech	1	mechanisch	keine	400°C (550°C)	40 (100)	20	nein	ja	ja	nein	ja	ja	ja	ja	ja	ja	nein	nein
SIGRAFLEX [®] Graphitfolie	> 98%	1	keine	0	kein	keine	400°C (550°C)	in Kombi- nation	in Kombi- nation	ja	in Kombi- nation	in Kombi- nation	nein	in Kombi- nation	in Kombi- nation	in Kombi- nation	in Kombi- nation	in Kombi- nation	in Kombi- nation	nein	nein
SIGRAFLEX [®] HOCHDRUCK mit Doppelbördel	> 99.85%	1.1	Glattblech	3	klebefrei	Imprägnierung	400°C (600°C)	160	50	nein	ja	ja	ja	ja	ja	ja	ja	ja	ja	bedingt	ja
SIGRAFLEX® HOCHDRUCK mit Bördel und vorverpresstem Zentrierrand	> 99.85%	1.1	Glattblech	3	klebefrei	Imprägnierung	400°C (550°C)	250	20	nein	ja	ja	ja	ja	ja	ja	ja	ja	ja	bedingt	ja
SIGRAFLEX [®] HOCHDRUCK mit Bördel	> 99.85%	1.1	Glattblech	3	klebefrei	Imprägnierung	400°C (550°C)	250	20	nein	ja	ja	ja	ja	ja	ja	ja	ja	ja	bedingt	ja
SIGRAFLEX [®] MF mit Bördel	> 99.85%	1	Spiessblech	1	mechanisch	Metallfolie und PTFE-Folie	270°C	160	10	nein	ja	ja	ja	ja	ja	ja	ja	ja	ja	ja	nein
SIGRAFLEX [®] UNIVERSAL mit Bördel	> 98%	1	Spiessblech	1	mechanisch	Imprägnierung	400°C (550°C)	160	22	nein	ja	ja	nein	ja	ja	ja	ja	ja	ja	bedingt	nein

Dichtungskennwerte nach DIN 28090-1 / Dichtungsdicke: 2mm / Leckageklasse Ovu = 0,1 / Innendruck 40 bar bei Raumtemperatur

Stand: September 2017

(A) Herstellerangaben unter Berücksichtigung der Medienbeständigkeit und nur nach Rücksprache. Angaben in Klammern (°C / bar).

Bei uns erhältliche Graphite

Sigraflex®									
Standard	mit Innenbördel	mit Doppelbördel							
Hochdruck	Hochdruck mit Innenbördel								
Universal	Hochdruck mit Innenbördel und Vorverdichtung								
Economy	Universal mit Innenbördel	Hochdruck mit Innen- und Aussenbördel							
	MF mit Innenbördel und Kammprofilstruktur								

weitere Produkte: Sigraseal®, SGL Graphitfolie, Reingraphitband

Montageempfehlung:

Montageempfehlung Reingraphitdichtungen

Kennwerte:

Kennwerte von SGL Grafit-Dichtungen

Beständigkeitsliste:

Dienstleistungen, Produktion, Revision, Schulungen

Bedingungen:

- Medium Oleumgemisc
- Druck 1 bar
- Temp.: ca. 80 °C

Ursache:

 Chemische Beständigl gegeben

BESTÄNDIGKEITSLISTEN

Beständigkeitslisten diverser Werkstoffe

Alle Angaben gelten als unverbindliche Richtwerte!

Faserwerkstoffe:

• <u>FP 3000</u>

PTFE:

• TF- und e-PTFE

Graphit:

• **®SIGRAFLEX Graphitfolie**

Elastomere:

	NR	EPDM	NBR	HNBR	CR	PUR	MVQ	FKM
Alterungs- beständigkeit	3	1	3	1	2	2	1	1
Ozonbeständigkeit	4	1	3	1	2	2	1	1
Benzinbeständigkeit	5	5	1	1	2	1	5	1
Öl- und Fett- beständigkeit	5	5	1	1	2	1	3	1
Säurebeständigkeit	3	1	4	4	2	5	5	1
Laugenbeständigkeit	3	2	3	3	2	5	5	1
Heißwasser- beständigkeit	3	1	3	2	3	5	5	2
Gasdurchläßigkeit	5	4	2	2	3	1	5	2
1 = sehr gut 2	= gut	3 = m	nittel	4 = mäs	sig	5 =	ungenü	gend